Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(5): e0254221, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34634931

RESUMO

Damage in COVID-19 results from both the SARS-CoV-2 virus and its triggered overactive host immune responses. Therapeutic agents that focus solely on reducing viral load or hyperinflammation fail to provide satisfying outcomes in all cases. Although viral and cellular factors have been extensively profiled to identify potential anti-COVID-19 targets, new drugs with significant efficacy remain to be developed. Here, we report the potent preclinical efficacy of ALD-R491, a vimentin-targeting small molecule compound, in treating COVID-19 through its host-directed antiviral and anti-inflammatory actions. We found that by altering the physical properties of vimentin filaments, ALD-491 affected general cellular processes as well as specific cellular functions relevant to SARS-CoV-2 infection. Specifically, ALD-R491 reduced endocytosis, endosomal trafficking, and exosomal release, thus impeding the entry and egress of the virus; increased the microcidal capacity of macrophages, thus facilitating the pathogen clearance; and enhanced the activity of regulatory T cells, therefore suppressing the overactive immune responses. In cultured cells, ALD-R491 potently inhibited the SARS-CoV-2 spike protein and human ACE2-mediated pseudoviral infection. In aged mice with ongoing, productive SARS-CoV-2 infection, ALD-R491 reduced disease symptoms as well as lung damage. In rats, ALD-R491 also reduced bleomycin-induced lung injury and fibrosis. Our results indicate a unique mechanism and significant therapeutic potential for ALD-R491 against COVID-19. We anticipate that ALD-R491, an oral, fast-acting, and non-cytotoxic agent targeting the cellular protein with multipart actions, will be convenient, safe, and broadly effective, regardless of viral mutations, for patients with early- or late-stage disease, post-COVID-19 complications, and other related diseases. IMPORTANCE With the Delta variant currently fueling a resurgence of new infections in the fully vaccinated population, developing an effective therapeutic drug is especially critical and urgent in fighting COVID-19. In contrast to the many efforts to repurpose existing drugs or address only one aspect of COVID-19, we are developing a novel agent with first-in-class mechanisms of action that address both the viral infection and the overactive immune system in the pathogenesis of the disease. Unlike virus-directed therapeutics that may lose efficacy due to viral mutations, and immunosuppressants that require ideal timing to be effective, this agent, with its unique host-directed antiviral and anti-inflammatory actions, can work against all variants of the virus, be effective during all stages of the disease, and even resolve post-disease damage and complications. Further development of the compound will provide an important tool in the fight against COVID-19 and its complications, as well as future outbreaks of new viruses.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Compostos Orgânicos/uso terapêutico , Glicoproteína da Espícula de Coronavírus/metabolismo , Vimentina/metabolismo , Animais , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Células HEK293 , Humanos , Camundongos , Células RAW 264.7
2.
Cell Physiol Biochem ; 44(4): 1651-1664, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29216638

RESUMO

BACKGROUND/AIMS: An increase in intracellular lipid droplet formation and hepatic triglyceride (TG) content usually results in nonalcoholic fatty liver disease. However, the mechanisms underlying the regulation of hepatic TG homeostasis remain unclear. METHODS: Oil red O staining and TG measurement were performed to determine the lipid content. miRNA expression was evaluated by quantitative PCR. A luciferase assay was performed to validate the regulation of Yin Yang 1 (YY1) by microRNA (miR)-122. The effects of miR-122 expression on YY1 and its mechanisms involving the farnesoid X receptor and small heterodimer partner (FXR-SHP) pathway were evaluated by quantitative PCR and Western blot analyses. RESULTS: miR-122 was downregulated in free fatty acid (FFA)-induced steatotic hepatocytes, and streptozotocin and high-fat diet (STZ-HFD) induced nonalcoholic steatohepatitis (NASH) in mice. Transfection of hepatocytes with miR-122 mimics before FFA induction inhibited lipid droplet formation and TG accumulation in vitro. These results were verified by overexpressing miR-122 in the livers of STZ-HFD-induced NASH mice. The 3'-untranslated region (3'UTR) of YY1 mRNA is predicted to contain an evolutionarily conserved miR-122 binding site. In silico searches, a luciferase reporter assay and quantitative PCR analysis confirmed that miR-122 directly bound to the YY1 3'UTR to negatively regulate YY1 mRNA in HepG2 and Huh7 cells. The (FXR-SHP) signaling axis, which is downstream of YY1, may play a key role in the mechanism of miR-122-regulated lipid homeostasis. YY1-FXR-SHP signaling, which is negatively regulated by FFA, was enhanced by miR-122 overexpression. This finding was also confirmed by overexpression of miR-122 in the livers of NASH mice. CONCLUSIONS: The present results indicate that miR-122 plays an important role in lipid (particularly TG) accumulation in the liver by reducing YY1 mRNA stability to upregulate FXR-SHP signaling.


Assuntos
Gotículas Lipídicas/metabolismo , MicroRNAs/metabolismo , Triglicerídeos/metabolismo , Fator de Transcrição YY1/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Ácidos Graxos não Esterificados/farmacologia , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células Hep G2 , Humanos , Gotículas Lipídicas/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Alinhamento de Sequência , Fator de Transcrição YY1/química , Fator de Transcrição YY1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...